

Economic Computation and Economic Cybernetics Studies and Research, Issue 3/2019; Vol. 53

__

113

DOI: 10.24818/18423264/53.3.19.07

Professor Elvira NICA, PhD

E-mail: elvira.nica@ase.ro

The Bucharest University of Economic Studies

Senior Lecturer Bogdan George TUDORICA, PhD

E-mail: bogdan.tudorica@upg-ploiesti.ro

Petroleum-Gas University of Ploiesti

Professor Dorel-Mihail DUSMANESCU, PhD

E-mail: doreld@upg-ploiesti.ro

Petroleum-Gas University of Ploiesti

Professor Gheorghe POPESCU, PhD

E-mail: popescu_ucdc@yahoo.com

Dimitrie Cantemir Christian University

Lecturer Alina Maria BREAZ, PhD

E-mail: alinamariabreaz@gmail.com

Aurel Vlaicu University of Arad

DATABASES SECURITY ISSUES - A SHORT ANALYSIS ON THE

EMERGENT SECURITY PROBLEMS GENERATED BY NoSQL

DATABASES

 Abstract. Over the last few years, the NoSQL (Not only SQL) databases

managed to impose themselves as a suitable alternative to their more common

relational counterparts. As such, the NoSQL databases have a plethora of practical
applications, such as various Web 2.0 solutions, document management but also

real-time systems where low latency is critical, embedded systems, storage for

sensor networks and finally the IoT (Internet of Things). There are enough
differences between the NoSQL and relational databases to presume that the

security problems related to each of the two types of databases are at least

partially different. This paper tries to review a few of the security aspects

associated with the NoSQL databases usage.

Keywords: NoSQL; security; threats; vulnerabilities.

JEL Classification: C88, O31, O33

1. Introduction
The central idea to the NoSQL approach is the fact that the classic relational

databases, although representing a very mature and robust technology, have several

limitations: volume of data, horizontal scalability, performance in write operations,

mailto:doreld@upg-ploiesti.ro
mailto:bogdan.tudorica@upg-ploiesti.ro
mailto:doreld@upg-ploiesti.ro
mailto:bogdan.tudorica@upg-ploiesti.ro

Elvira Nica, Bogdan George Tudorica, Dorel-Mihail Dusmanescu,

Gheorghe Popescu, Alina Maria Breaz

114

DOI: 10.24818/18423264/53.3.19.07

fast access, flexibility, complex maintainability, administration and operations and

so on.

To solve all these limitations, various NoSQL databases use several different

architectural approaches(key-value store, document store, wide column store, etc.).
Building on this, the new type of databases has some advantages (they are

faster than their predecessors both in the basic read / write operations and in the data

extraction operations, they are more apt to store very large amounts of data, they are
more flexible) but also some disadvantages (normalization and ACID - Atomicity,

Consistency, Isolation, Durability - are most of the times not available, the query

methods or equivalents are not that capable of complex operations – e.g.
joins)(Edlich, 2012).

It should be noted that there are some NoSQL solutions which do include

ACID capabilities (MarkLogic, Aerospike, FairCom c-treeACE, Symas LMDB and

OrientDB) and there are even solutions which do offer both ACID and join
capabilities (Google Spanner, Clustrix, VoltDB, MemSQL, Pivotal's GemFire XD,

SAP HANA, NuoDB, and Trafodionare) but these ones are more often classified as

NewSQL instead of NoSQL.
Even though we did not commented anything to this point on the architectural

intricacies of the various NoSQL solutions, we should note that, not only the

NoSQL databases are vastly differing from the relational ones, but they are even
greatly differing from each other – DB-Engines is listing 121 relational solutions in

1 category and 184 solutions, which can be labeled lato sensu as NoSQL, in 11

categories(Anon., 2016). As a direct consequence, one should not expect to find a

single set of security related issues with the NoSQL solutions (as was the case with
the relational databases), but multiple sets (maybe one related which each subtype

of NoSQL databases).

Talking about expectancy, what should we be really presuming? In our
opinion, we should be expecting two broad categories of NoSQL security related

issues:

- Known security vulnerabilities adapted to the new environment;

- Brand new security vulnerabilities generated by the new methods and
technologies used in the NoSQL solutions.

Note. The following review is mostly related to the main subtypes of NoSQL

databases (key-value store, document store, wide column store). The other subtypes
of NoSQL Database Management Systems (Graph DBMS, Time Series DBMS,

Search Engine DBMS, Content stores, Multi-value DBMS, Native XML DBMS,

Object Oriented DBMS, and RDF Stores) are only scarcely covered in the existing
security related literature.

Note. Threats not directly related with the NoSQL solutions (e.g. DDoS type

attacks) will not be covered in this paper.

Databases Security Issues - A Short Analysis on the Emergent Security Problems

Generated by NoSQL Databases

115

DOI: 10.24818/18423264/53.3.19.07

2. Known security vulnerabilities

When we talk about known security vulnerabilities, we should look no further

than The Open Web Application Security Project (OWASP) Top 10 Application
Security Risks – 2013 list(The OWASP Foundation, 2016). We can also add to that

the CWE/SANS Top 25 Most Dangerous Software Errors list(Martin, et al., 2011)

and the CWE/SANS On the Cusp: Other Weaknesses to Consider list(Martin, et al.,

2011).
OWASP Top Ten is not an exhaustive list - more can be found in the

OWASP Developer Guide, OWASP Testing Guide and OWASP Code Review

Guide - but it covers the main vulnerabilities which can be found in online
applications (we should not forget that the vast majority of applications which are

using NoSQL applications are web application or have at least a web component).

Let’s make a quick review of these vulnerabilities.

A. Injection

There are multiple types of injection which can occur (e.g. SQL, OS, and
LDAP injection are classical injection types). The injection vulnerability appears

when untrusted data can be sent to an interpreter as part of a command or query.

This way the interpreter can be put to execute unintended commands or to access
data without proper authorization(The OWASP Foundation, 2016)(Kalman, 2014).

For NoSQL databases, SQL injection seems to be out of the scene while OS

and LDAP injection are still feasible. Of course, the SQL itself cannot be used, but

for each NoSQL solution there are still ways to query the database –it’s a basic
functionality for a database.

Java Script Object Notation (JSON) is a new way of querying databases

(especially NoSQL databases). The following DBMS are using JSON: Druid,
Elasticsearch, CouchDB, RavenDB, MarkLogic Server, JSON Object Document

Mapper, JasDB, RaptorDB, Embedded JSON DB, SDB, Riak, Scalien, Pincaster,

RaptorDB, InfoGrid, ArangoDB, MarcelloDB, Axibase, VaultDB and
MongoDB(Edlich, 2012).

As a querying method, JSON also becomes an attack vector for injection

attacks. Several JSON injection examples are provided by (Ron, et al., 2015), (Oku,

2014),(Sullivan, 2011).
A JSON injection can take the form of a direct command JSON injection

(which can be built on a Broken Authentication and Session Management

vulnerability), a PHP array JSON injection, a HTTP POST JSON injection (maybe
exploited further via a Cross-Site Request Forgery), or a JavaScript JSON injection

(a classical Cross-Site Scripting vulnerability)(Ron, et al., 2015).

Elvira Nica, Bogdan George Tudorica, Dorel-Mihail Dusmanescu,

Gheorghe Popescu, Alina Maria Breaz

116

DOI: 10.24818/18423264/53.3.19.07

Other forms of query related injection (e.g. CQL injection) can affect

Cassandra, NEO4J, Hadoop/HBASE and other NoSQL DBMS(Kadebu &

Mapanga, 2014).

B. Broken Authentication and Session Management

Authentication and session management are main application functionalities.
Often they are not implemented correctly, allowing attackers to compromise

passwords, keys, or session tokens, or to exploit other implementation flaws to

assume other users’ identities(The OWASP Foundation, 2016)(Kalman, 2014).
Multiple NoSQL solutions (e.g. MongoDB, Redis, CouchDB, Cassandra,

NEO4J and Hadoop) seem to be suffering from such vulnerabilities for they are

presumably executed in trusted environments(Kadebu & Mapanga, 2014)(Chow,

2013)(Yegulalp, 2015).
This fact, the lack of authentication measures from the default deployments of

some NoSQL DBMS, was actually perceived for a while as a feature by several

vendors. A few examples of this are(Sullivan, 2011):
- “One valid way to run the Mongo database is in a trusted environment,

with no security and authentication” … This “is the default option and is

recommended” - the MongoDB documentation
- “The default AllowAllAuthenticator approach is essentially pass-through”

- the Cassandra Wiki

- The “Admin Party”: Everyone can do everything by default - CouchDB:

The Definitive Guide
- No authentication or authorization support - Riak

For another example, MongoDB, which is ranked as the most popular

NoSQL solution by DB Engines (DB Engines, 2016), was analyzed in multiple
occasions during 2014 and found to have a huge number of installations not secured

(Rossi, 2015)(Butturini, 2014) (56.5% from the total of MongoDB installations

found in one of the studies amounting for 18000+ vulnerable installations, 40000+

vulnerable installations in another study).
At later moments some of the NoSQL vendors started to take care of these

vulnerabilities (the work is in progress at various NoSQL solutions). As an example,

MongoDB started to implement valuable security features in version 2.6 (now at
version 3.2).At this moment security checklists for this product are available and a

security architecture is made public and can be put in place.

Note. One of the NoSQL products evolution characteristics is the fact that
new major versions are often radically different than the previous ones, not

maintaining backward compatibility (or declaring most of the previously used

commands and methods as obsolete and doubling them with new ones while the old

ones are still available for a while).

Databases Security Issues - A Short Analysis on the Emergent Security Problems

Generated by NoSQL Databases

117

DOI: 10.24818/18423264/53.3.19.07

C. Cross-Site Scripting (XSS)

XSS attacks can be made when an application takes untrusted data and sends

it to a web browser without proper validation or escaping. XSS allows attackers to
execute scripts in the target’s browser and thosescripts can hijack user sessions,

deface web sites, or redirect the user to malicious sites(The OWASP Foundation,

2016)(Kalman, 2014).
Many NoSQL solutions are using JavaScript as client-side and / or server-

side scripting language: MongoDB, Druid, CouchDB, JSON ODM, NeDB, NoSQL

embedded DB, KitaroDB, ArangoDB, gunDB, eXist, IBM Lotus/Domino(Edlich,
2012).

As it was already seen in the Injection section, JavaScript can be used as an

auxiliary for various injection attacks. Bryan Sullivan provides multiple forms of

JavaScript enabled attacks in (Sullivan, 2011). Some other JavaScript related
vulnerabilities are also mentioned in (Ron, et al., 2015) and (Chow, 2013).

D. Insecure Direct Object References

An insecure direct object reference happens when the developer exposes a

reference to an internal implementation object, be it the entire database, a file, a
folder, or a database key. Without a way to control the access, these references can

be manipulated to access unauthorized data(The OWASP Foundation,

2016)(Kalman, 2014).

Many of the existing NoSQL solutions have this vulnerability for they are
using default port numbers which are open. Taking into account that most of the

times the administrators / developers are not changing these ports and it’s not very

difficult to find the database vendor and the IP address, accessing the database
becomes very easy(Chow, 2013):

- MongoDB: 27017, 28017, 27080

- CouchDB: 5948

- Hbase: 9000
- Cassandra: 9160

- NEO4J: 7474

- Redis: 6379
- Riak: 8098

E. Security Misconfiguration

Beyond other security controls, a secure configuration defined and deployed

for the application, frameworks, application server, web server, database server, and

platform is a must for ensuring a good level of security(The OWASP Foundation,
2016)(Kalman, 2014). A common trait of many NoSQL DBMS is the fact that they

Elvira Nica, Bogdan George Tudorica, Dorel-Mihail Dusmanescu,

Gheorghe Popescu, Alina Maria Breaz

118

DOI: 10.24818/18423264/53.3.19.07

have insecure configurations by default. It is the work of a good DB administrator to

change a default insecure configuration into a working secure one.

Additionally, software should be kept up to date, a task which is, again, the

signature of a good DB administrator. Unhappily, one of the things badly lacking in
the NoSQL area is good DB administrators (we can actually say that, in this area,

not only good administrators, but administrators, generally speaking, are

absent)(Singh, 2016).

F. Sensitive Data Exposure

Many of the NoSQL solution, while still being in their infancy stages, are

lacking protection by encryption for data at rest (in storage) and / or in transit. Also

deficient are special precautions when the data are exchanged with the

browser(Yegulalp, 2015)(Singh, 2016)(Kirkpatrick, 2013).
A particularly severe issue is the lack of encryption or weak encryption for

very sensitive data such as password storage. (Chow, 2013) reported that at the

respective moment (2013) MongoDB was using MD5 for password storage, Redis
was storing passwords as plain text and CouchDB was storing passwords as plain

text or encrypted them using weak salts.

Note. Later developments of the most preeminent NoSQL solutions
introduced several encryption and auditing features (such as encryption at rest and

encryption in transit in MongoDB, version 2.6, auditing in version 2.6(Butturini,

2014) and full support for SSL in later versions – 3.0 and 3.2).

G. Missing Function Level Access Control

Web applications are supposed to check for the right level of access both
when a feature is made accessible in the UI and on the server at the moment each

function is accessed. Some of the applications are making all the necessary

verifications and this is a fact for both applications built on relational DB and for

applications built on NoSQL DB. One would think that the level of vulnerability
should be the same but this is not true. The same idea expressed earlier (the lack of

experience) about the NoSQL DB administrators is also true about NoSQL

developers.
Note. Taking into account the five years adoption rule of thumb and stating

that a true beginning of NoSQL usage is somewhere at the beginning of 2013 (as it

can be deduced from(Anon., 2016); we know that the real beginnings of the NoSQL
phenomenon are dated way earlier, but we are talking about the relative moment

when the NoSQL solutions became real life / commercial products), one should

think that the beginning of the maturity stage in the NoSQL world should occur no

earlier than late 2017- early 2018.

Databases Security Issues - A Short Analysis on the Emergent Security Problems

Generated by NoSQL Databases

119

DOI: 10.24818/18423264/53.3.19.07

H. Cross-Site Request Forgery (CSRF)

A CSRF attack is based on the idea of using a logged-on victim’s browser to

send a forged HTTP request, including the information from the legitimate session
cookie and any other automatically included authentication information, to a

vulnerable web application. This allows the attacker to use the victim’s browser to

generate requests which are considered genuine by the application / server. As a
response to these requests, the application can return unauthorized data or can

execute various data manipulation tasks(The OWASP Foundation, 2016)(Kalman,

2014).
For NoSQL based applications, this vulnerability applies as well as for

relational ones, for many NoSQL solutions are providing various flavors of HTTP /

REST API. Amongst these we can find: MongoDB, CouchDB, Hbase, Druid,

RavenDB, MarkLogic Server, Clusterpoint Server, Terrastore, BangDB, Scalien,
Pincaster, TreodeDB, TITAN, InfoGrid, BrightstarDB, ArangoDB, Create Data,

eXist, Qizx, GT.M, OpenInsight, Model 204 Database, IBM Lotus/Domino(Edlich,

2012)(Ron, et al., 2015).Several REST based attacks are described in (Ron, et al.,
2015) and (Sullivan, 2011).

I. Using Known Vulnerable Components

Usually software components, such as libraries, frameworks, and other

software modules run with full privileges. As such, the exploitation of a known

vulnerability in a software component means accessing data with full privileges,
including a possible server takeover(The OWASP Foundation, 2016)(Kalman,

2014).

Unhappily there is no software component made perfect and there is actually
no way to know in advance all the vulnerabilities of a software component. It should

be enough in most cases to avoid those components which are really plagued with

serious vulnerabilities (e.g. Apache CXF Authentication Bypass vulnerability in the

Apache CXF framework or the Spring Remote Code Execution vulnerability from
the Spring Expression Language component (The OWASP Foundation, 2016)).

The good part of this vulnerability is the fact that many components used by

the NoSQL based applications are in their early stages, so they and their
vulnerabilities are not known enough to be exploited.

The bad part is that, well, many components used by the NoSQL based

applications are in their early stages, so they and their vulnerabilities are not known
enough to be patched or avoided, and this not known for the moment vulnerabilities

will surface at a later time when, maybe, plenty of applications will be based on

these components.

Elvira Nica, Bogdan George Tudorica, Dorel-Mihail Dusmanescu,

Gheorghe Popescu, Alina Maria Breaz

120

DOI: 10.24818/18423264/53.3.19.07

J. Unvalidated Redirects and Forwards

Web applications may redirect or forward users to other pages and websites,

and sometimes these redirects are based on untrusted / unverified data. This is one
of the well-known attack vectors which can be used to send victims to phishing or

malware sites, or to access unauthorized pages(The OWASP Foundation,

2016)(Kalman, 2014).
At least, for this type of vulnerability, there is nothing specific to NoSQL

based applications. One should expect the same level of risk on this type of

vulnerability for both relational and NoSQL based applications. The difference
would be the fact that the relational DB based applications are still the vast majority

(we will discuss this factor in detail a little bit later in the Trends section) so we

should expect that, at least for the near future, attacks based on this vulnerability

will be in greater number targeted to relational DB based applications.

3. New classes of security vulnerabilities

A. Schema based attacks

Many of the NoSQL solutions have a new approach on creating database

structures – new schemas will be created at the moment they are needed – inserting
data in a schema that does not exists will automatically create the schema. On top of

that, most of the times the new schema is not access-protected in any way(Chow,

2013).

While not offering access to already existing data from other schemas, this
vulnerability can be used for various types of attacks, such as a DDoS attack

designed to fill up the existing storage by creating new schemas and loading them

with garbage data.

B. Product specific issues

Each NoSQL solution, being based on a particular technology, will have its

own security issues, as expected. we will simply exemplify this with some of the

vulnerabilities of a few products.

MongoDB specific security issues(Chow, 2013):
- The run() command can act as shell;

- Significant information can be extracted directly from the startup_log

from the local collection (pid, OS details, paths);
- An unsupervised sniff tool (mongosniff) is included in default MongoDb

installation. This tool can be used for tracing / sniffing the database

activity in real time.

Databases Security Issues - A Short Analysis on the Emergent Security Problems

Generated by NoSQL Databases

121

DOI: 10.24818/18423264/53.3.19.07

- Unauthorized access to a MongoDB instance or cluster when using LDAP

authentication (corrected in version 3.0.7)

- Remotely trigger a denial of service (crash) due to failure to check for

missing value (corrected in version 3.0.1)
- Remotely trigger a denial of service (crash) via a specially crafted regular

expression (corrected in version 2.6.9 and 3.0.1)

- A specially crafted, malformed BSON message may trigger an uncaught
exception in the server, resulting in a loss of availability (corrected in

version 2.6.8 and 2.4.13)

- Remotely trigger a crash when X.509 authentication is enabled (corrected
in version 2.6.2)

- Information disclosure of user credentials (corrected in version 2.6.1)

- Improperly grant user system privileges on databases other than local

(corrected in version 2.4.5, 2.5.1)
- Remotely triggered segmentation fault in JavaScript engine (corrected in

version 2.4.5, 2.5.1)

- It is possible to create documents that collide with JavaScript functions
when fetched using the mongo shell

CouchDBspecific security issues (Chow, 2013)(Apache CouchDB, 2016):

- The HTTP / REST API is exposed by default
- Apache CouchDB Timing Attack Vulnerability

- Information disclosure via unescaped backslashes in URLs on Windows

- JSONP arbitrary code execution with Adobe Flash

- DOM based Cross-Site Scripting via Futon UI
- DoS (CPU and memory consumption) via the count parameter to /_uuids

The above examples shouldn’t be too scary as similar lists are (or should be)

existing for every DB solution ever made (be it relational or NoSQL). The only
lesson to be learned from here is that the NoSQL solutions are not exempted from

such vulnerabilities only because they are newer.

A brief description of the above listed vulnerabilities, compared to their homologues
in the relational database world, can be found in the following table:

Vulnerability Relational database applicable? NoSQL database
applicable?

SQL injection Yes. A classic vulnerability,

with multiple counteract /

mitigation measures available.

No.

OS and LDAP

injection

Yes. A classic vulnerability,

with multiple mitigation

measures available.

Yes, it’s not DBS

dependent. It’s related to

the authentication /

authorization method, so

Elvira Nica, Bogdan George Tudorica, Dorel-Mihail Dusmanescu,

Gheorghe Popescu, Alina Maria Breaz

122

DOI: 10.24818/18423264/53.3.19.07

the same mitigation

measures as for the

relational DBS are valid.

JSON injection No. Relational database system
are not usually dependent on

JSON data transmissions. If, by

exception, such an instance

will occur in some app, the
mentioned app will be

vulnerable.

Yes. Same counteract /
mitigation measures as for

SQL injection should be

effective in some of the

occurrences, but not in all

Broken
authentication

and session

management

For some products. Most
notable relational database

offer strong authentication and

session management, but the

same is not always the case for
smaller-foot DBS such as MS

Access, SQL Compact and so

on.

For many products. Many
NoSQL DBS are still in

infant or early stages.

Cross-Site

Scripting (XSS)

For some applications based on

relational DBS. Especially

when the app includes some

JavaScript interface.

For some applications based

on NoSQL DBS. Especially

when the app includes some

JavaScript interface.

Insecure direct

object references

Yes. A classic vulnerability,

with multiple counteract /

mitigation measures available.

Yes. Counteract / mitigation

measures available, but

highly dependent on the DB
administrator’s skills.

Missing

function level

access control

Yes. A classic vulnerability,

with multiple counteract /

mitigation measures available.

Yes. Counteract / mitigation

measures available, but

highly dependent on the DB
developer’s skills.

Cross-Site

Request Forgery

(CSRF)

Yes. Especially when HTTP /

REST API’s are provided for

the respective DBS.

Yes. Especially when

HTTP / REST API’s are

provided for the respective
DBS.

Using known

vulnerable
components

Yes. Less prevalent for mature

DBS products.

Yes. More prevalent as

many NoSQL DBS are still
note mature enough.

Unvalidated

redirects and

forwards

Yes. More occurrences

foreseeable as the relational

DBS are dominating the
market.

Yes. Less occurrences

foreseeable as the relational

DBS are dominating the
market.

Databases Security Issues - A Short Analysis on the Emergent Security Problems

Generated by NoSQL Databases

123

DOI: 10.24818/18423264/53.3.19.07

Schema based

attacks

No. Yes.

Product specific

issues

Yes. Less prevalent for mature

DBS products.

Yes. More prevalent as

many NoSQL DBS are still
note mature enough.

4. Counteracts and mititgation

A vulnerability review such is the one from this paper will not be complete

without a few words about how to counteract / mitigate the many listed issues.

A good starting point should be again The OWASP Top 10 Application
Security Risks – 2013 list(The OWASP Foundation, 2016). This list is not only

providing classes of known vulnerabilities but also a large amount of prevention

measures, advices and best practices.

Note. The same organization is providing supplementary info via so called
cheat sheets - SQL Injection Prevention Cheat Sheet(The OWASP Foundation,

2016), XSS (Cross Site Scripting) Prevention Cheat Sheet(The OWASP

Foundation, 2016) and Cross-Site Request Forgery (CSRF) Prevention Cheat
Sheet(The OWASP Foundation, 2016), to name a few ones1.

A few proposed counteracts:

- For injection vulnerabilities: native encoding, static code analysis,
Dynamic Application Security Testing (DAST), Interactive Application

Security Testing (IAST)(Ron, et al., 2015), use of safe API which avoids

the use of the interpreter entirely or provides a parameterized interface,

careful inspection of escaped special characters using the specific escape
syntax for that interpreter(The OWASP Foundation, 2016).

- For REST API exposure and CSRF attacks: control the requests, limiting

their format, make sure JSONP and CORS are disabled in the server API
to make sure that no actions can be made directly from a browser(Ron, et

al., 2015).

- For Access Control and Prevention of Privilege Escalation: proper
authentication and RBAC authorization, proper privilege isolation(Ron, et

al., 2015)

- For Sensitive Data Exposure: make sure you encrypt all sensitive data at

rest and in transit, don’t store sensitive data unnecessarily / discard it as
soon as possible, ensure strong standard algorithms and strong keys are

used, and proper key management is in place, ensure passwords are stored

with an algorithm specifically designed for password protection, such as
bcrypt, PBKDF2, or scrypt, Disable autocomplete on forms collecting

1 The complete list can be found at https://www.owasp.org/index.php/Cheat_Sheets

https://www.owasp.org/index.php/Cheat_Sheets

Elvira Nica, Bogdan George Tudorica, Dorel-Mihail Dusmanescu,

Gheorghe Popescu, Alina Maria Breaz

124

DOI: 10.24818/18423264/53.3.19.07

sensitive data and disable caching for pages that contain sensitive data(The

OWASP Foundation, 2016).

5. Trends

A decent vulnerability review should not be over without a forecast of future

trends.
At this moment (May 2016) the relational DBMS are covering 81.6% of the

market (popularity wise), the rest of 18.4% being divided between various flavors of

NoSQL solutions (2.9% for the wide column stores, 3.4% for the key-value stores,
6.8% for the document stores).

In the last three years, various types of NoSQL solutions have seen raises of

19.6-420.25% in popularity (179.13-241.65% for the three main subtypes – key-

values stores, document stores and wide column stores).In the last two years, the
same NoSQL solutions raises in popularity were of 0.36-69.49% (40.75-53.13% for

the three main subtypes).The last year have seen even lower grows, NoSQL

popularity changes being in the range of -19.71-20.46% (10.68-11.93% for the three
main subtypes).At the same time (the last three / two / one years) the relational

solutions popularity remained mostly constant(Anon., 2016).

Looking at these numbers, we can safely assume that initial hype period is
almost over and the trend for the following few years will be one of slow(er)

growth for the NoSQL solutions, with a stabilization at about 20-22% percent

popularity share (a nonlinear regression analysis model chosen for best fitness,

applied on the above mentioned values, gave a 5.5-7.3% growth for the three main
subtypes in 2016, a 2.6-3.3% growth for the three main subtypes in 2017 and finally

a 0.3-1% growth in 2018; of course, such a forecast is only a game with numbers for

there are a lot of factors which can influence the market evolution).
Starting from the results of this game with numbers and from the rule of

thumb that the number of discovered vulnerabilities is related with the product

popularity, one should not see a great increase in the number of vulnerabilities

related to the NoSQL solutions for the following few years.

6. Statistics

It makes sense to compare the NoSQL databases security to the relational

databases security from a statistical point of view (e.g. number of known
vulnerabilities, number of applied vulnerability patches etc.), but only if we also

take into consideration two other factors, the difference in market share between the

two categories (a lower market share means both a lower number of installations
and a lower effort for detecting new vulnerabilities by the all interested parties, be

them “white” or “black”), and the difference in “age” (an “older” product had

enough time to accumulate a larger number of discovered vulnerabilities).

Databases Security Issues - A Short Analysis on the Emergent Security Problems

Generated by NoSQL Databases

125

DOI: 10.24818/18423264/53.3.19.07

The following table takes into account the data available in Common

Vulnerabilities and Exposures List2 for five relational and five NoSQL database

products. While the sheer number of discovered vulnerabilities is in no way an

indicator of a low level of security, we can accept as a base for a possible analysis
the quotient between the number of discovered vulnerabilities and the level of

interest received by the products (as measured, by example by the DB-engines

ranking3):

DBS

2
0

1
9

v
u

ln
er

ab
il

it
ie

s
#

2
0

1
8

v
u

ln
er

ab
il

it
ie

s
#

2
0

1
7

v
u

ln
er

ab
il

it
ie

s
#

2
0

1
6

v
u

ln
er

ab
il

it
ie

s
#

2
0

1
5

v
u

ln
er

ab
il

it
ie

s
#

2
0

1
4

v
u

ln
er

ab
il

it
ie

s
#

T
o

ta
l

v
u

ln
er

ab
il

it
ie

s
#

D
B

-e
n

g
in

es

sc
o

re

2
0

1
8

-2
0

1
9

v
u

ln
er

ab
il

it
ie

s
#

/s
co

re

Oracle Database 9 12 11 30 32 46 140 1288 0.0162

MySQL 67 134 118 124 90 79 612 1218 0.1648

MS SQL Server 1 5 1 12 8 2 29 1072 0.0055

PostgreSQL 1 13 17 14 10 16 71 479 0.0292

MongoDB 0 5 3 3 5 2 18 408 0.0122

IBM DB2 4 32 13 5 5 12 71 174 0.2063

Elasticsearch 1 8 3 2 8 3 25 148 0.0605

Redis 3 8 3 6 4 1 25 148 0.0741

Cassandra 0 2 0 0 2 0 4 126 0.0159

Hbase 1 1 0 1 1 0 4 60 0.0334

Total relational 82 196 160 185 145 155 923 4233 0.0656

Total NoSQL 5 24 9 12 20 6 76 891 0.0325

If the quotient between the number of discovered vulnerabilities and the level

of interest given to the products can be taken as some sort of indicator of the level of

security, as proposed above, several possible (contradictory!) conclusions can be

drawn,(and maybe analyzed in further studies) such as:

 The NoSQL database products benefit from the fact that they are

“young” anddo not follow upward compatibility so their code is less

bloated and more secure.

 There are too few NoSQL related discovered vulnerabilities, so there

must be others which are not discovered yet, which indicates towards
a lower level of security.

2http://cve.mitre.org
3https://db-engines.com/en/ranking

http://cve.mitre.org/
https://db-engines.com/en/ranking

Elvira Nica, Bogdan George Tudorica, Dorel-Mihail Dusmanescu,

Gheorghe Popescu, Alina Maria Breaz

126

DOI: 10.24818/18423264/53.3.19.07

Not taking into account any possible interpretations, we found large

variations in the ratio proposed above (and even larger variations in the number of

discovered vulnerabilities, as seen in the previous table):

An important observation to be taken into account: while researching for the

present paper, the authors found no relevant study or statistics either informing the

managers on the issues related to NoSQL databases security, or describing their

perception of the subject. It seems that NoSQL databases security, as an important
element of information systems security management, is not at this moment a well-

documented subject and may require time and efforts in order to become a familiar

concept for managers.

7. Conclusions

Most of the NoSQL DBMS are in early production stages and as such, are
prone to a lot of improvement. This is especially true on the security side, as the

initial approaches of the majority of NoSQL solution vendors where directed mostly

toward performance, the security issues being put aside for some time.

Recent developments are about to change this state as the preeminent NoSQL
solutions are already closing a full maturity stage. Such developments are also

expected to occur in the following years regarding the human resources involved -

mainly administrators and developers, but other categories of staff should also be
trained appropriately about the characteristics of NoSQL solutions.

Even not taking into account this maturity issue, as any other complex

software product, NoSQL solutions are and will be having various security

vulnerabilities and these must be known, taken into account, counteracted and

0

0.05

0.1

0.15

0.2

0.25

2018-2019 # of vulnerabilities / DB-engine score

Databases Security Issues - A Short Analysis on the Emergent Security Problems

Generated by NoSQL Databases

127

DOI: 10.24818/18423264/53.3.19.07

mitigated as much as possible in order to achieve a relative state of security for the

organization informational assets.

As the current paper is far from covering the considered subject, the authors

feel that a few furthering reading suggestions would be welcome. As such, the
reader may also like to look at the following papers:

- Sethuraman Srinivas, Archana Nair, “Security maturity in NoSQL

databases - are they secure enough to haul the modern IT
applications?”(Srinivas & Nair, 2015)

- Lior Okman, Nurit Gal-Oz, Yaron Gonen, Ehud Gudes , Jenny Abramov,

“Security Issues in NoSQL Databases”(Okman, et al., 2011)
- Anam Zahid, Rahat Masood, Muhammad Awais Shibli, “Security of

sharded NoSQL databases: A comparative analysis”(Zahid, et al., 2014)

- Iván Arce, et al., “Avoiding the Top 10 Software Security Design

Flaws”(Arce, et al., 2014).

REFERENCES

[1] Anon (2016), DBMS Popularity Broken down by Database Model. [Online]
Available at: http://db-engines.com/en/ranking_categories

[Accessed 28 April 2018];

[2] Apache CouchDB (2016), Apache CouchDB 2.0.0 Documentation - 16.
Security Issues Information. [Online]
Available at: http://docs.couchdb.org/en/1.6.1/cve/

[Accessed 29 April 2018].;

[3] Arce, I. et al. (2014), Avoiding the Top 10 Software Security Design Flaws,
s.l.: IEEE Center for Secure Design;

[4] Butturini, R. (2014), Making Mongo Cry: NoSQL for Penetration Testers -

Defcon 22 Wall of Sheep Presentation Slides. [Online]

Available at: http://www.nosqlmap.net/index.html
[Accessed 28 April 2018];

[5] Chow, M. (2013), Abusing NoSQL Databases. Las Vegas, s.n.

[6] DB Engines, (2016), DB-Engines Ranking. [Online]
Available at: http://db-engines.com/en/ranking

[Accessed 28 April 2018];

[7] Edlich, S. (2012), NoSQL Database. [Online]
Available at: http://nosql-database.org/

[Accessed 28 April 2018];

[8] Kadebu, P. & Mapanga, I. (2014), A Security Requirements Perspective

towards a Secured NoSQL Database Environment. Delphi, s.n.;

Elvira Nica, Bogdan George Tudorica, Dorel-Mihail Dusmanescu,

Gheorghe Popescu, Alina Maria Breaz

128

DOI: 10.24818/18423264/53.3.19.07

[9] Kalman, G. (2014), 10 Most Common Web Security Vulnerabilities. [Online]

Available at: https://www.toptal.com/security/10-most-common-web-security-

vulnerabilities

[Accessed 29 April 2018];
[10] Kirkpatrick, D. (2013), Mongodb - Security Weaknesses in a typical NoSQL

 Database. [Online]

 Available at: https://www.trustwave.com/Resources/SpiderLabs-
 Blog/Mongodb---Security-Weaknesses-in-a-typical-NoSQL-database/

 [Accessed 29 April 2018];

[11] Martin, B., Brown, M., Paller, A. & Kirby, D.(2011), CWE/SANS Top 25

 Most Dangerous Software Errors. [Online]

 Available at: http://cwe.mitre.org/top25/

 [Accessed 28 April 2018];

[12] Martin, B., Brown, M., Paller, A. & Kirby, D. (2011), On the Cusp: Other

 Weaknesses to Consider. [Online]

 Available at: http://cwe.mitre.org/top25/archive/2011/2011_onthecusp.html

 [Accessed 28 April 2018].
[13] Okman, L. et al. (2011), Security Issues in NoSQL Databases. Changsha,

 s.n.;

[14] Oku, K. (2014), The JSON SQL Injection Vulnerability. [Online]
 Available at: http://blog.kazuhooku.com/2014/07/the-json-sql-injection-

 vulnerability.html

 [Accessed 28 April 2018];

[15] Ron, A., Shulman-Peleg, A. & Bronshtein, E. (2015), No SQL, No

 Injection?. San Jose, s.n.;

[16] Rossi, B.(2015), Major security alert as 40,000 MongoDB databases left

 unsecured on the internet. [Online]
 Available at: http://www.information-

 age.com/technology/security/123459001/major-security-alert-40000-mongodb-

 databases-left-unsecured-internet

 [Accessed 28 April 2018];
[17] Singh, A. (2016), 5 Business Challenges That May Backfire Your NoSQL

 Strategy. [Online]

 Available at: http://www.algoworks.com/blog/business-challenges-that-
 backfire-nosql-strategy/

 [Accessed 29 April 2018];

[18] Srinivas, S. & Nair, A. (2015), Security Maturity in NoSQL Databases - Are

 they Secure enough to Haul the Modern IT Applications?. Kochi, s.n.;

[19] Sullivan, B. (2011), Server-side JavaScript Injection - Attacking and

 Defending NoSQL and Node. JS. Las Vegas, s.n.

Databases Security Issues - A Short Analysis on the Emergent Security Problems

Generated by NoSQL Databases

129

DOI: 10.24818/18423264/53.3.19.07

[20] The OWASP Foundation (2016< Cross-Site Request Forgery (CSRF)

 Prevention Cheat Sheet. [Online]

 Available at: https://www.owasp.org/index.php/Cross-

 Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
 [Accessed 29 April 2018];

[21] The OWASP Foundation (2016), OWASP Top Ten Project. [Online]

 Available at: owasptop10.googlecode.com/files/OWASP%20Top%2010%20-
 %202013.pdf

 [Accessed 28 April 2018];

[22] The OWASP Foundation (2016), SQL Injection Prevention Cheat Sheet.
 [Online]

 Available at:

 https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

 [Accessed 29 April 2018];
[23] The OWASP Foundation (2016), XSS (Cross Site Scripting) Prevention

 Cheat Sheet. [Online]

 Available at:
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention

_Cheat_Sheet

 [Accessed 29 April 2018];
[24] Yegulalp, S. (2015), 3 security pain points NoSQL must remedy. [Online]

 Available at: http://www.infoworld.com/article/2884320/security/3-security-

 pain-points-nosql.html

 [Accessed 29 April 2018];
[25] Zahid, A., Masood, R. & Shibli, M. A. (2014), Security of sharded NoSQL

 databases: A comparative analysis. Rawalpindi, s.n.

